ARTIFACT
EVALUATED
yusenix

' 4

AVAILABLE

XSSKky: Detecting XSS Vulnerabilities through Local Path-Persistent Fuzzing

Youkun Shi'™*, Yuan Zhang*, Tianhao Bai', Feng Xue', Jiarun Dai’, Fengyu Liu®, Lei ZhangT,
Xiapu Luo*, Min Yang®

TFudan University

Abstract

The Cross-Site Scripting (XSS) vulnerability is one of the
most prevalent security issues in PHP web applications. To
detect XSS vulnerabilities, existing dynamic techniques are
commonly hindered by insufficient code exploration capabili-
ties and non-trivial execution environment setup. Comparably,
static techniques offer more flexible detection of target code
by identifying vulnerable source-sink paths. However, these
paths would probably be guarded by custom sanitizers (i.e.,
implemented to filter malicious inputs). Without establishing
reliable sanitizer modeling and analysis techniques, existing
work can hardly achieve satisfactory effectiveness.

In light of this, we propose a static sanitizer-tolerant XSS
detector, named XSSky. Our key insight is that concrete mali-
cious inputs, which evade sanitizers and trigger XSS vulner-
abilities, serve as strong proof of a vulnerability’s existence.
Based on this idea, XSSky attempts to deterministically cu-
rate malicious inputs for potentially vulnerable source-sink
paths using a path-persistent fuzzing strategy. Specifically,
XSSky first converts each given source-sink path into locally
executable Programs Under Test (PUTs). Then it uses XSS-
oriented exploit primitives and PHP interpreter feedback to
generate malicious inputs to efficiently confirm the existence
of vulnerabilities. Evaluation results show that XSSky success-
fully detected 60 previously unknown XSS vulnerabilities
(including 31 caused by sanitizer evasion) across 20 popu-
lar PHP web applications. Compared with several existing
state-of-the-art techniques, XSSky achieved a precision im-
provement of 11.48%~642.49% and a recall improvement of
87.51%~172.70%. Furthermore, XSSky identified 18 unique
vulnerabilities that none of the baselines could detect.

1 Introduction

To date, PHP web applications have become an integral part of
our daily lives. According to statistics [12], more than 75.1%
of online websites are developed using PHP, with promi-
nent examples including Wikipedia [13], WordPress [14],

¥The Hong Kong Polytechnic University

Baidu [3], and Tumblr [11]. With their widespread adoption
and enduring popularity, PHP web applications also face in-
creased exposure to security vulnerabilities.

Cross-Site Scripting vulnerabilities (a.k.a., XSS) are among
the most prevalent in PHP web applications. Analytics indi-
cate that over the past decade, 52.24% of web vulnerabilities
have been classified as XSS vulnerabilities [16], and 86%
of PHP web applications contain at least one such vulner-
ability [2]. These vulnerabilities enable attackers to inject
malicious scripts into web pages, leading to severe security
breaches such as theft of sensitive information or user session
hijacking, posing a significant threat to application security.

To proactively detect XSS vulnerabilities, substantial ef-
forts have been made to develop security testing techniques,
which can be broadly divided into two main lines: dynamic
analysis [23-27,43,48] and static analysis [20,22,33, 35,37,
41]. Dynamic analysis is renowned for its high precision in
providing proof of concept (PoC) for vulnerability detection;
however, it is often limited by false negatives due to inade-
quate code coverage. In contrast, static analysis techniques
can flexibly scan the entire application’s source code, allow-
ing for a thorough examination of each sink within the target
application. However, we have observed that these techniques
exhibit certain fragility in their effectiveness when analyzing
code paths that include sanitizers (i.e., malicious input filters).

To be more specific, existing static approaches [20,22,33,
41] heavily rely on expertise-dependent modeling to iden-
tify the sanitizers on source-sink paths, and hastily assume
that the presence of a sanitizer indicates the non-existence of
vulnerabilities. However, this methodology has two signifi-
cant risks: @ The expertise-dependent modeling can hardly
recognize diverse custom sanitizers, eventually causing false
positives of XSS vulnerability detection. @ The presence of a
sanitizer does not necessarily guarantee security, considering
the existence of flawed sanitizers (e.g., design oversights, im-
plementation flaws, or misuse [35]), consequently resulting
in false negatives of XSS vulnerability detection. Faced with
this issue, some existing techniques [18,35,37] attempt to for-
mally verify the correctness of sanitizers using SMT solvers.

However, due to the inherent limitations of SMT solving (e.g.,
memory explosion when analyzing complex logic [35]), these
techniques have quite limited feasibility and applicability.

Different from existing works, we conceived the idea of
integrating dynamic analysis capabilities into static detectors
to analyze sanitizer-exist vulnerable paths. To put it straight-
forwardly, for a potentially vulnerable source-sink path, we
aim to generate path-specific PoC to convincingly confirm the
vulnerability’s existence. Here, an appealing solution appears
to migrate path-guided fuzzing techniques [31,44,49] (i.e., to
guide the code exploration towards given paths) designed for
binaries/systems/compilers to PHP web applications. How-
ever, these techniques still inevitably explore code unrelated
to the target paths (e.g., code exploration before reaching a
given path) and require fully built applications for the fuzzing
environment, demanding significant manual efforts.

Therefore, we propose a novel path-persistent fuzzing strat-
egy to efficiently confirm whether a given source-sink path
is vulnerable. Specifically, for a source-sink path reported by
a static tool, we convert it into local executable code snip-
pets, referred to as PUT (Program Under Testing). We then
employ fuzzing techniques to verify the security of this path.
This path-persistent approach not only prevents the fuzzing
process from exploring code unrelated to the target but also
improves the throughput of the fuzzing process.

While this novel approach offers significant advantages,
it also presents two key challenges that must be addressed
to ensure its successful implementation. One of the primary
challenges involves the sound conversion of source-sink paths
reported by static tools into locally executable PUTs, as
these paths often contain numerous undefined symbols. If
not properly addressed, this issue can affect the executability
of fuzzing. Another major challenge is determining how to ef-
fectively and efficiently detect XSS vulnerabilities by fuzzing
these PUTs. We have found that existing dynamic testing
techniques are limited by two factors. First, they lack fine-
grained consideration for XSS exploitation construction (e.g.,
sink context, as clarified in §2.2), which leads to attempts
with invalid test cases. Second, they lack an understanding
of sanitizers, making it difficult to mutate characters inter-
cepted by sanitizers purposefully, and struggle to assess the
effectiveness of current mutation strategies.

In this work, we focus on reflected server-side XSS vul-
nerability detection and propose XSSky to address the above
challenges. Regarding PUT conversion, for a given source-
sink path, XSSky first performs a bottom-up data flow analysis
on undefined variables to recover their definitions. During
this process, for variables lacking a complete def-use chain,
XSSky follows existing techniques [19,40] to convert them
into fuzzer-controllable temporary variables. Then, XSSky
conducts undeclared function localization to iteratively lo-
cate the definitions of the function calls within the code path.
In terms of fuzzing, XSSky addresses the issue through the
following two aspects. On one hand, we have compiled a com-

prehensive set of exploit primitives (i.e., eight sink-context-

aware exploit grammars) to guide the fuzzer in efficiently

generating test cases. On the other hand, we propose a novel
fuzzing scheme based on the feedback of the PHP interpreter.

By hooking string comparison and modification functions and

using the hooked values as feedback, the fuzzer can determine

which characters in the test case are blocked by the sanitizer
and whether the mutated test case bypasses the sanitizer.

We evaluated XSSky on 20 popular, real-world PHP web
applications. The evaluation results show that XSSky success-
fully converted 6,997 / 7,005 source-sink paths reported by
TChecker [41] into locally executable PUTs. Through com-
prehensive fuzzing tests, XSSky successfully discovered 60
critical XSS vulnerabilities, notably including 31 instances
where sanitizers were already deployed. We then compared
the effectiveness of XSSky against several existing techniques.
The results confirmed that XSSky achieved a precision im-
provement of 11.48%~642.49% and a recall improvement of
87.51%~172.70% in XSS vulnerability detection. Moreover,
XSSky not only detected all vulnerabilities found by baselines
but also discovered 18 additional vulnerabilities that none
of the baselines could detect, highlighting its advantage in
advancing static techniques with a novel fuzzing scheme.
Contributions. The contributions of this paper are as follows:
* We present a novel path-persistent and interpreter-feedback

fuzzing strategy to efficiently confirm whether a given

source-sink path is vulnerable.

* Our experiments against real-world popular PHP web appli-
cations show XSSky is accurate and effective against XSS
vulnerabilities, contributing to the discovery of 60 previ-
ously unknown XSS vulnerabilities, with 18 unique ones
that none of the compared baselines could detect.

* We compare XSSky with several SOTA techniques, and the
results demonstrate that XSSky outperforms the baselines
by improving precision by 11.48%~642.49% and recall by
87.51%~172.70%. Moreover, XSSky identified 18 unique
vulnerabilities that none of the baselines could detect.

2 Background

In this section, for ease of understanding our ideas and the
techniques proposed later, we first introduce two key aspects
of XSS vulnerability exploitation (§2.2). Then, we provide an
overview of sanitizers (§2.3), followed by a discussion on the
pros and cons of existing techniques (§2.4).

2.1 XSS Vulnerability Types

In this part, we introduce the two main types of XSS vulnera-
bilities: client-side and server-side XSS.

Client-side XSS occurs when untrusted data is processed by
client-side JavaScript without proper sanitization. This can
lead to malicious behaviors in the user’s browser, such as
manipulating the Document Object Model (DOM) or abusing

JavaScript APIs like eval (). For instance, if a webpage in-
securely processes data retrieved from location.hash, an
attacker could craft a URL like abc . com# to trigger execution.
Server-side XSS arises when untrusted user input is improp-
erly sanitized by the server-side before being embedded in
web content. The malicious payload is delivered through
server-handled sources such as HTTP request parameters,
cookies, or database entries. This kind of vulnerability in-
cludes stored XSS (payload persisted in server databases)
and reflected XSS (payload immediately echoed in server
responses).

This paper focuses on reflected server-side XSS vulnera-
bilities originating from insecure PHP code implementations
(stored server-side XSS detection can be extended and dis-
cussed in §6). In contrast, client-side XSS vulnerabilities,
which arise from vulnerable JavaScript code, are beyond the
scope of this paper.

2.2 XSS Vulnerability Exploitation

In this part, we introduce two key aspects of XSS vulnerability
exploitation: commonly used exploit components (§2.2.1) and
sink contexts (§2.2.2).

2.2.1 Common components of XSS exploits

Based on prior studies [25,35,39], the exploits of XSS vul-
nerability consist of the following three key components.
Terminator Component is used to escape user input from the
current syntactical structure, paving the way for subsequently
injecting JavaScript-embedded code or directly constructing
malicious JavaScript code.

JavaScript Embedded Component is utilized to create an
executable JavaScript context within HTML code, enabling
the execution of malicious JavaScript code injected by attack-
ers. It can be divided into the following three types.

* Protocols: involves using URI schemes like "javascript"
protocol within HTML hyperlink attribute values to execute
JavaScript code.

* HTML event handler attributes: includes numerous at-
tributes (e.g., "onclick") that execute JavaScript in re-
sponse to user interactions or page events.

e Inline JavaScript tags: entails directly placing JavaScript
code within "<script>" tags or embedding it within
HTML elements.

JavaScript Code Component refers to the malicious code in-
tended to be executed by the browser (e.g., steal user cookies).
A common method to demonstrate the presence of an XSS vul-
nerability is to trigger a popup window using alert ("XSS").

2.2.2 Sink contexts

As a form of code injection, constructing an XSS exploit
using the aforementioned components also depends on the

syntactical context in which the sink is used (a.k.a., sink con-
texts). According to OWASP [7], we can categorize the sink
contexts into four main types, as shown in Figure 1.

// HIML Context

1

2 echo $input;

3 // URL Context

4 echo '"';

5 // HTML Attributes Context

6 echo "<input value='".Sinput."'>"

7 // JavaScript Context

8 echo "<input onclick="".$input."'>"; // type 1
9 echo "<script>".S$input.";</script>"; // type 2

Figure 1: Examples for each type of sink context.

HTML Context. In this context, user input is directly embed-
ded within the HTML content of a web page. Attackers may
exploit this by injecting malicious HTML or script tags, such
as "<script>alert (‘'XSS’)</script>".

URL Context. In the URL context, user input is em-
bedded within HTML hyperlink attribute values, often
seen in "<a href=" or "<img src=". Attackers can ex-
ploit this by using the "javascript:" protocol to create
a JavaScript execution context, enabling attacks such as
"javascript:alert (‘XSS’)".

HTML Attributes Context. This context involves insert-
ing user input into non-hyperlink HTML attribute values,
such as within "value=" attributes. An attacker can craft
input to escape the attribute and inject event handlers to
create a JavaScript execution context for an attack (e.g., "’
onerror=alert (XSS’)").

JavaScript Context. This context involves embedding user
input directly within JavaScript inline tags or event handlers.
This allows attackers to execute malicious JavaScript code
(e.g., "alert (XSS’) ") without needing to create an addi-
tional execution context.

2.3 XSS Sanitizers

Landscape. In web application development, using sanitizers
to protect against XSS vulnerabilities is a common practice.
These sanitizers can be divided into built-in and custom types.
While existing static analysis techniques often pre-model
built-in sanitizers, handling custom ones is more challeng-
ing, as developers may use various methods like blacklists
or regular expressions. These methods can also intertwine
with business logic, complicating static analysis (e.g., the
GETPOST () sanitizer in Dolibarr has over 300 lines of code).
Sanitizer Evasion. Prior studies [35, 45, 50] have demon-
strated that sanitizers can be vulnerable due to design
oversights, implementation flaws, or misuse. Even well-
known PHP built-in sanitizers (e.g., htmlspecialchars ()
or htmlentities ()) can be evaded in certain sink contexts.
For instance, as shown in Figure 2, the XSS vulnerability

CVE-2022-20719 was caused by evading the PHP built-in
sanitizer htmlentities (). This is because, in URL contexts,
the javascript: protocol can be used as a JavaScript embed-
ded component, and the htmlentities () function does not
restrict protocols, thus allowing it to be evaded by attackers.
Similarly, custom sanitizers can also be evaded by carefully
crafted malicious inputs, e.g., CVE-2020-14475 [4]. There-
fore, more sophisticated techniques are required to thoroughly
analyze these sanitizers when detecting XSS vulnerabilities.

1 // Pre-pacth version of CVE-2022-20719 (glpi)

2 echo "<a href="".htmlentities ($S_SERVER['REQUEST URI'])."
— '>...";

3 // Exploit: javascript:alert(l)

Figure 2: An example of XSS vulnerabilities caused by the
misuse of the PHP built-in sanitizer htmlentities ().

2.4 Existing Work for XSS Detection

To date, various techniques have been proposed to detect XSS
vulnerabilities, which can be broadly categorized into two
main lines: dynamic analysis [23-27,43,48] and static anal-
ysis [20,22,33,35,37,41]. Generally, dynamic approaches
usually employ crawlers to identify requests that might trigger
XSS vulnerabilities and use bug oracles to confirm these vul-
nerabilities. While these approaches provide high precision
by providing Proof of Concept (PoC) for the vulnerabilities
detected, they suffer from limited code coverage, which hin-
ders a thorough analysis of all potential sinks in the target
application. For instance, the state-of-the-art technique, ReS-
can [24], achieves coverage of less than 50% of the code lines
in the widely used PHP web application WordPress [14].

In contrast, static approaches offer an advantage in this re-
gard. By scanning the entire application’s source code, these
techniques can comprehensively analyze each sink within the
target application. However, these approaches struggle with
accurately analyzing source-sink paths that include security
sanitizers. Specifically, the mainstream design [20,22,33,41]
often assumes that if a predefined sanitizer function (e.g.,
htmlspecialchars ()) appears on the source-sink path, the
path is deemed secure. However, this design faces two ma-
jor challenges. First, due to the diverse implementations of
custom sanitizers, relying solely on expert modeling may fail
to accurately detect them, resulting in false positives from
vulnerability detection. Second, the mere presence of a san-
itizer on a path does not ensure path security, as sanitizers
themselves may be vulnerable, potentially leading to false
negatives in detecting vulnerabilities, as discussed in §2.3. Al-
though some recent methods [18,35,37] attempt to verify the
correctness of sanitizers by using SMT solvers, they require
extensive modeling by security experts, particularly when it
comes to modeling diverse features of regular expressions.

Furthermore, these methods often suffer from issues such as
memory explosion and solver failures due to the complex
business logic intertwined with sanitizers, which limits their
feasibility and applicability.

3 Design Overview

In this section, we will first present our high-level idea (§3.1),
then discuss the challenges encountered in achieving this idea
(§3.2) along with our key insights for addressing them (§3.3).
Finally, we will introduce the workflow of our proposed ap-
proach using a real-world running example (§3.4).

3.1 Our High-Level Idea

Compared to purely dynamic analysis, we favor static tech-
niques for their satisfactory comprehensiveness in code anal-
ysis. However, as detailed in §2.4, static analysis often faces
challenges with high false positive and false negative rates,
primarily due to under-identification or evasion of sanitizers.
To address these issues while preserving the benefits of static
analysis, our key idea is to employ fuzzing to directly verify
source-sink paths reported by static tools, thereby providing
path-specific Proof of Concepts to confirm vulnerabilities.
Advantages. Overall, our integrated approach offers several
benefits. Unlike purely dynamic analysis, it utilizes the com-
prehensive coverage provided by static analysis, thus avoiding
the limitations associated with unexplored code. Moreover, it
also enhances purely static analysis by removing the necessity
for intensive modeling and hastily made assumptions required
for analyzing sanitizers. By directly verifying code paths with
fuzzing techniques, our idea can mitigate false positives from
the under-identification sanitizers and false negatives from
the sanitizer evasion. This ultimately improves the overall
effectiveness of vulnerability detection.

Design Choice. While integrating fuzzing techniques into
static tools presents an appealing solution, achieving satisfac-
tory performance is still challenging. Our primary goal is to
verify the potentially vulnerable paths reported by static tools
without unnecessary code exploration. However, traditional
fuzzing methods, or even directed fuzzing, often explore irrel-
evant paths, leading to unacceptable performance overhead.
Specifically, directed fuzzing could be limited by the follow-
ing factors: (1) extra human efforts are required to make the
entire application code run, while security testing only focuses
on a small part of it; (2) it inevitably delves into irrelevant
paths while attempting to reach targets; (3) it may encounter
difficulties when dealing with complex web behaviors, such
as exploring web interactions that need to be triggered in
sequence on the client side [29,46].

To address these issues, we propose a novel path-persistent
fuzzing strategy to efficiently generate PoC for a given source-
sink path. Specifically, we can convert the source-sink path
reported by a static tool into local executable code snippets,

referred to as PUT (Program Under Testing). Then, we can
employ fuzzing techniques to verify the security of this path.
This path-persistent approach not only restricts the fuzzing
process to the relevant code, but also significantly boosts the
fuzzing throughput by eliminating the need to uphold the
preliminary requirements for reaching the path.

3.2 Challenges

Following the aforementioned high-level idea, we need to
address the following two key challenges:

Challenge I: How to soundly convert the paths reported by
static tools into executable PUTs? Existing static tools usu-
ally focus on the data-flow dependency of sink parameters on
sources. As a result, the source-sink paths they report often
contain some undefined symbols (i.e., variables and func-
tion calls), which hinder executability. Therefore, initializing
these undefined symbols becomes key to the conversion of the
PUTs, but this is not easy. Specifically, two main issues need
to be addressed: (1) the undefined variables may introduced
through file inclusion or be assigned through runtime opera-
tion (e.g., database queries), making them difficult to initialize
during local execution of the PUTs; (2) the undeclare function
calls might be object function invocations, making it difficult
to accurately find their call targets when the correct runtime
object type cannot be determined.

Challenge II: How to effectively and efficiently detect the XSS
vulnerabilities by fuzzing PUTs? Despite numerous efforts
to identify XSS vulnerabilities using dynamic testing tech-
niques [23-26,43,48], we observed that these approaches are
less effective in this regard and remain limited in the following
two aspects: (1) sink context-insensitivity. XSS vulnerabilities
are essentially a form of HTML and JavaScript code injection.
Therefore, during fuzzing, test case generation must be sensi-
tive to the context of the sink, ensuring that the injected code
can seamlessly integrate into the existing syntax structure.
Overlooking the sink context can lead to a large number of
ineffective attempts, and even lead to missing vulnerabilities.
(2) insufficient feedback mechanism. The mutation strategy
is vital in fuzzing as it determines which components to mu-
tate and how. Current techniques either traverse predefined
exploits [23,24,26,43], using random mutation methods [48],
or employing genetic algorithms [25]. However, they often
lack a robust feedback mechanism. This absence hinders the
understanding of why current test cases are blocked by sanitiz-
ers and what mutations should be applied, thereby inhibiting
the ability to perform targeted and effective mutations.

3.3 Key Insights

To tackle the aforementioned challenges, our approach is built
upon two key insights.

Key Insight I: Adaptable undefined symbols initialization
strategy. During the conversion of code paths into PUTs, our

approach involves relocating undefined symbols by traversing
the call graph (CG) or program dependency graph (PDG) and
integrating their definition-related code into paths identified
by static tools. However, externally-declared and dynamically-
assigned variables, as well as object function invocations with
indeterminate object types, are challenging to address solely
through static-analysis-based graph traversal. To largely en-
sure the executability and eliminate false negatives of vulnera-
bility detection, we propose a trade-off yet adaptable strategy
for these variables and functions. For undefined variables, we
replace them with fuzzer-controllable temporary variables,
and assign the correct variable type and random variable val-
ues during runtime. For object function invocations with in-
determinate object types, we adopt an over-approximation
approach which collects all potential call targets and creates
a PUT for each of them. If an XSS vulnerability is triggered
in any PUT, the path is considered vulnerable.

Key Insight II: Sink context-aware and interpreter feedback-
guide fuzzing scheme. As discussed in §2.2, our key observa-
tion hints that, XSS vulnerabilities with different sink contexts
have distinct yet stable exploit primitives. This observation
allows us to design context-sensitive exploit grammars that
limit unnecessary testing space. Specifically, for sinks with
different contexts, we tailor combinations of XSS exploit
components to guide the fuzzer in generating test cases that
match the syntax structure of the sink context. Regarding
the feedback mechanism, we aim to collect essential feed-
back from the PHP interpreter to guide the fuzzer in iterating
test case mutations and confirming vulnerabilities. This in-
cludes collecting sanitizer-related information, such as line
numbers of each hooked sanitizer, input values, matched val-
ues, and return values. Specifically, the feedback serves two
main purposes: (1) it enables the fuzzer to identify which
characters in the generated test case were flagged by the san-
itizer, facilitating more targeted mutations; (2) it helps the
fuzzer in determining the effectiveness of the current muta-
tion strategy by analyzing whether more sanitizers have been
bypassed, thereby aiding in the choice of mutation strategies
for future iterations. Notably, we are not the first to leverage
interpreter feedback to guide PHP fuzzing. However, existing
works [28,42,47] primarily use it to enhance code exploration
capabilities, whereas our approach uses it to increase code
exploitation capabilities.

3.4 Running Example

Let’s use a real-world example to further illustrate our ideas.
This example is selected for its multi-patch lifecycle. The
vulnerability was first disclosed as CVE-2018-19993. After
being patched, an evasion occurred again, and it was then dis-
closed as CVE-2020-14475. Subsequently, it was evaded once
more and was finally fully fixed on June 13, 2022. This show-
cases the error-prone nature of XSS sanitizers and motivates
our work. Figure 3 presents the workflow of our approach

O Applications | _ _ | @ SOTA Static Tool
Source Code TChecker
|

@y
$addr = $format->decode($_GET['addr']);
$addr = GETPOST(Saddr, 'alphanohtml');
$addr = Scountry . $addr;
print '<tr><td class="tdtop">" . $langs[" Address"]

. '</td><td><textarea>'. $addr . '</textarea>'

B W=

'®
O 0N R W -

$format = new UrlEncodedFormat();
$help_url = "/appeals/address";
$sql = "SELECT label from ¢_country WHERE entity =1";
$country = $db->query($sql);
$addr = $format->decode($_GET['addr']);
$addr = GETPOST($addr, 'alphanohtml');
$addr = $country . $addr;
print '<tr><td class=""tdtop">" . $langs[" Address"]
. '</td><td><textarea>'. $addr . '</textarea>'
. '
Please visit' . $help_url . 'if there is any mistake';

function GETPOST(Sparam, Scheck) {
if (Scheck A "alpha") {
S$param =/trim($param);
if (preg_match('/"/', Sparam)){
$param ="";
} else if ($check == "alphanohtml") {
$paramh = trim(Sparam);
$parafn = dol_string_nohtmltag(Sparam);
} |

. '
Please visit' . $help_url . "if there is any mistake';

a) The potential protected path reported by TChecker

A

@

b) The code snippet completed by XSSky

Convert and Fuzzing |

— O VUL AL —

retly/n $param; |
} |

/7 d) Simplified deltmmon of GETPOST/()
/

/?addr=<scr<scr<script>ipt>ipt>alert

@ Label as vulnerable path | v (Dfsersiserseriptiptipt-... 4 ¥
/ ¥
| 1 |include 'function_definition.php'; /1 | function dol_string_nohtmltag($stc) {

v @ localhost/PUT.php x 4+ 2 |Shelp_url = "/appeals/address"; 1 2| Stemp=preg replace('/<br[*>]*>/i', "\n", $stc);

3 |Scountry = $_GET['temp_yNECDo']; V2 3 Spattern = "/<[A<>]+>/";
« G ® localhost/PUT.php 4 |$addr = dccodc($7GET[vac!dr']); ' . s 4| Stemp= prcgircp.lacc‘($pancm, . $tcmp); .

5 [$addr = GETPOST(Saddr, 'alphanohtml'); _ / value: <scr<script>ipt>alert(1)</scr<script>ipt>
&8 localhost says 6 |Saddr = Scountry . $addr; - 5 $temp = preg_replace(Spattern, """, Stemp);

7 |print '<tr><td class="tdtop">'.$_GET['mutate_drmheY'] _ =1 value: <script>alert(1)</script>

vl _ _ |~ .'</td><td><textarea>'.S$addr . '</textarea>' «— — — 7| ¢ return trim(Stemp);
. '
Please visit' . $help_url . 'if there is any mistake'; 71}

) Bug Oracle of XSSky

c) The locally executable code snippet converted by XSSky

e) Simplified definition of dol_string_nohtmltag()

Figure 3: A running example of XSS vulnerability found in Dolibarr (5.5k stars); Fully fixed on June 13, 2022.

(named XSSky) for detecting an XSS vulnerability in Dolibarr.
The process involves two key stages.

Pre-processing: Source-Sink Path Location. First, XSSky
employs the state-of-the-art static detector TChecker [41]) to
analyze the target application. Figure 3 (a) shows a source-
sink path reported by TChecker. In this path, there is a data
flow dependency between the user-controlled source (i.e.,
$_GET[’addr’] in line 1) and the parameter of XSS sink
(i.e., Saddr of print in line 4).

Stage I: PUT Conversion. Second, XSSky converts this code
path into a locally executable PUT. Following our key insights
discussed in §3.3, XSSky begins by initializing the undefined
variables. It performs a bottom-up data flow analysis on these
variables, tracing back until it reaches constants, super-global
variables, or points where no further data flow edges exist.
Figure 3 (b) presents the original path refined by XSSky after
performing data-flow backward analysis. The sections high-
lighted with a light yellow background (i.e., lines 1-4) indicate
the definitions relocated by xSSky. Then, XSSky converts vari-
ables lacking def-use relationships in the PDG into temporary
variables (e.g., line 7 in Figure 3 (¢)). Finally, XSSky locates
and saves the definition of callee functions in a file named
"function_definition.php", and then includes it in the source-
sink path via file inclusion (line 1 in Figure 3 (c)).

Stage II: PUT Fuzzing. Third, XSSky leverages fuzzing tech-
niques to confirm vulnerabilities in the PUT. The vulnerability
arises from developer oversight in the implementation of the
sanitizer. Specifically, the developers implemented the sani-
tizing logic within the function dol_string_nohtmltag(),
as shown in Figure 3 (e). The developers intended to filter
out the dangerous characters "<>", but due to oversight, they
only accounted for a limited number of encoding bypass
scenarios, thereby resulting in a vulnerability caused by
triple-encoding bypasses. When a malicious input, e.g.,
"<sc<scr<script>ipt>ript>alert(1)</sc</scr</script>ipt>ript>"

is provided, it becomes "<script>alert(1)</script>" after
passing through the sanitizer function preg_replace ()
twice, thus leading to an XSS vulnerability.

The Fuzzer engine of XSSky detects the vulnerability
through the following steps: @ XSSky analyzed the sink con-
text and identified it as HTML context. @ Based on the prior-
ity scheduling algorithm, XSSky first selected < Inline,JS >
as the exploit grammar and generated the corresponding ini-
tial test case "<script>alert(1)</script>". & Through feedback,
XSSky determined that the inline component "<script>" in the
test case was detected by the sanitizer, allowing it to focus
on mutating this component. @ By attempting a series of
mutation strategies for the inline component, XSSky discov-
ered that using a double-encoding strategy allows for passing
through more sanitizers (triggering feedback from both line
4 and line 5). Consequently, it chose to continue with this
strategy, generating a triple-encoding test case. ® Through
validation with a bug oracle (as shown in Figure 3 (f)), XSSky
confirmed the vulnerability.

4 Design of XSSky

In this section, we present the design details of XSSky. As
previously clarified in §3.4, XSSky relies on existing static
analyzers to identify source-sink paths of potential XSS vul-
nerabilities, and we do not claim contributions at this point.
Currently, we build XSSky on top of TChecker [41], which
is the state-of-the-art static detector for XSS vulnerabilities.
With the provided source-sink paths in hand, XSSky leverages
two key modules to confirm the XSS vulnerability implied
in this path: @ PUT Conversion Module (§4.1) converts the
given source-sink paths into locally executable PUTs. & PUT
Fuzzing Module (§4.2) leverages fuzzing techniques to con-
firm vulnerabilities on these PUTs.

4.1 PUT Conversion Module

The source-sink paths reported by existing static tools in-
evitably contain undefined symbols. Hence, to ensure that the
path-related code snippets are locally executable, the PUT
Conversion Module introduces two types of path-related code
enhancement, respectively for addressing undefined variables
(§4.1.1) and undeclared functions (§4.1.2).

4.1.1 Undefined Variable Initialization

General Procedure. In general, for a given source-sink path,
XSSky traverses the code property graph (CPG) of the target
application to identify the def-use chain for each undefined
variable, and accordingly merges these definition-related code
pieces into the original source-sink path. Specifically, XSSky
performs a bottom-up data flow analysis on each undefined
variable to trace backward along its def-use chain. The tracing
is terminated until it encounters constants, and super-global
variables (e.g., $_GET). After that, XSSky sequentially merges
the assignment statements on the def-use chain into the begin-
ning of the original source-sink path for variable initialization.
Handling Variable with Incomplete Def-Use Chain. No-
tably, as thoroughly discussed in §3.2, complex PHP lan-
guage features or dynamic assignments make it challeng-
ing [21,30,41] for static analysis frameworks to construct a
complete def-use chain for all variables, thereby hindering the
variable initialization. To sum up, there mainly exist two situ-
ations of incomplete def-use edges, respectively arising when
handling the following two types of variables: @ externally-
declared variables, i.e., variables introduced through file in-
clusion; @ dynamically-assigned variables, e.g., variables
assigned through runtime database queries, file manipulation.

Here, faced with the infeasibility of static analysis, we
propose a trade-off yet adaptable initialization strategy, to
largely ensure the executablity of generated PUTs. That is, di-
rectly converting these undefined variables (i.e., variables
with incomplete def-use chains) into temporary variables
that can be controlled by the fuzzer, and randomly assign
values to them during runtime. Note that, for achieving lo-
cal fuzzing [19, 40] of specific code pieces, it has become a
common practice to replace undefined variables with fuzzer-
controllable variables. The key difference lies in that, ex-
isting works commonly focus on C/C++ programs rather
than PHP programs. Comparably, PHP is a weakly typed
language, which means that for each undefined variable, not
only the value assignment but also the variable type is un-
determined. To tackle this issue, we would timely correct
the variable type of each fuzzer-controllable variable during
runtime based on interpreter feedback (i.e., the PHP inter-
preter would report error messages once encountering incor-
rect variable types). Technically, in our work, these tempo-
rary variables are constructed using the super-global vari-
able "$_GET" with a unique key, which consists of the prefix
"temp_" followed by six random case-insensitive characters.

For ease of understanding, taking Figure 3 (c) as an example,
the undefined variable $1angs ["Address"] is converted into
$_GET['temp_drmheY’] (line 7).

4.1.2 Undeclared Function Localization

General Procedure. Similar to the procedure of undefined
variable initialization (see §4.1.1), for each invoked function
call on the source-sink path, XSSky identifies the call site
on CPG (i.e., a call site node) and then locate the invoked
function by querying the CPG (i.e., a function node that is
connected to the call site node through a call edge). Then,
based on the file and starting line information recorded at
the function node, XSSky can accordingly extract the func-
tion implementation from the codespace of the target applica-
tion. Eventually, XSSky incorporates these function-definition-
related code pieces into the original source-sink path. It is
important to note that the newly integrated function may also
introduce additional undeclared function calls, XSSky itera-
tively locates and integrates these function definitions until no
more undeclared function calls exist. When implementing the
prototype of XSSky, for ease of maintenance and management
of PUT code, we save function-definition-related code pieces
in a file named function_definition.php within the same
directory as the code path file, and incorporate the function
definitions into the original source-sink path via file inclusion
(e.g., line 1 in Figure 3 (¢)).
Handling Object Function Invocation with Indeterminate
Object Type. Nonetheless, as discussed in §3.2, considering
the existence of object function invocations (i.e., to invoke
a function that is defined within a class), it remains an open
challenge [20, 21, 41] to construct complete and accurate
call graphs for PHP applications. Consequently, without the
capability to determine the correct runtime object type of the
target object function invocation, it is quite difficult to achieve
precise function definition localization and PUT conversion.
Here, we propose an over-approximate approach to tackle
this issue, and the key rationale behind is that vulnerability
detectors are more tolerant of false positives than false nega-
tives. To be specific, given an object function invocation with
an indeterminate runtime type, XSSky constructs the candi-
date set of invoked functions by collecting all object functions
that share the same function signature (i.e., function name
and number of parameters). With this candidate set in hand,
XSSky constructs multiple PUTs by respectively and indepen-
dently integrating each candidate function definition into the
original source-sink path. In such a manner, once any of the
constructed PUTs is found to be vulnerable, XSSky confirms
the vulnerability existence.

4.2 PUT Fuzzing Module

For the PUTs converted by the preceding module, the PUT
Fuzzing Module confirms vulnerabilities through four steps.

First, it performs a runtime DOM analysis to determine the
sink context of the XSS vulnerability implied in the PUT
(8§4.2.1). Second, based on the identified sink context, it selects
appropriate exploit grammars and initializes the test cases
for fuzzing (§4.2.2). Third, it tries to generate vulnerability-
triggerable inputs by employing various mutation strategies
and feedback mechanisms (§4.2.3). Finally, it confirms and
reports vulnerabilities by monitoring the bug oracle (§4.2.4).

4.2.1 Sink Context Analysis

As clarified in §2.2.2, the construction of XSS exploits is
highly dependent on the syntactical context of the sink (i.e.,
sink context). Hence, to guide the fuzzer in generating effec-
tive test cases, XSSky first identifies the sink context. To be
specific, for a given PUT, considering the diverse dynamic
characteristics of HTML, XSSky opts to perform runtime
DOM analysis to precisely analyze the HTML structure sur-
rounding the sink and determine the sink context. This pro-
cess is mainly divided into two steps: first, XSSky constructs
a runtime environment for the PUT and retrieves the PUT’s
runtime response by crafting requests; then, by parsing the
DOM tree within the response, XSSky accurately analyzes
and determines the sink context.

Step I: Retrieving the Runtime Response. Firstly, XSSky
places the converted PUT into the local Apache web directory,
and then simulates a browser accessing the PUT by crafting
a regular request. Notably, when constructing the request,
XSSky assigns a unique string (by default, the MD5 hash
of the current timestamp) to the request parameter of the
source. This facilitates the subsequent rapid identification of
the source’s location within the DOM tree node.

Step II: Determining the Sink Context. Upon receiving the
corresponding response, XSSky proceeds to the second step
of determining the sink context. First, XSSky parses the DOM
tree of the response using the Python library 1xml [5]. Then,
it locates the node where the sink parameter resides in the
DOM tree by utilizing the previously assigned unique string.
Finally, XSSky determines the sink context by analyzing this
node and determining which of the following criteria are met:

* JavaScript Context: This context is identified if the node’s
tag attribute value is script, or if the node contains an
attri attribute where the key is an HTML event attribute
(e.g., onclick) and the value is the previously assigned
unique string (i.e., source).

* URL Context: This context is determined if the node con-
tains an attri attribute where the key is an HTML hyper-
link attribute (e.g., href) and the value is the source.

* HTML Attributes Context: This context is identified if the
node has an attri attribute where the key is not an HTML
hyperlink or event attribute and the value is the source.

* HTML Context: This context is assumed when none of the
aforementioned conditions are satisfied.

! ! {]

[<Pmlocols,JS> <Event, JS>] [<Inline, JS>] [<Tcm1inamr,JS>]

| I I]
i i +

[<Terminator, Protocols, JS>] [<Terminator, Event, JS>] [<Terminator, Inline, JS>]

Figure 4: The priorities of different exploit grammars.

4.2.2 Test Case Initialization

As discussed in §2.2.2, due to the syntax-sensitive nature of
code injection, the sink context will influence the construction
of the XSS exploits. Building on this, we defined appropriate
exploit grammars to initialize test cases, which then guided
the fuzzer in generating and mutating suitable inputs. Table 1
presents the exploit grammars we defined for different sink
contexts along with their corresponding initial test cases. The
underlying rationale behind this design is as follows.

String Concatenation within Sink Contexts. We have
identified that in specific sink contexts, such as URL and
JavaScript contexts, the syntax required for constructing XSS
exploits is affected by whether the sink parameter is part of
a string concatenation. In a JavaScript context, for example,
if the sink parameter is used independently, as in "<input
onclick=".$input.">", an attacker can exploit this solely
using the JavaScript Code component. Conversely, when
the sink parameter is concatenated with other strings, such
as "<input onclick=foo".S$input."foo>", the attacker
must employ a Terminator component to break out of the
string before applying the JavaScript Code component to in-
sert malicious JavaScript. Hence, we further classify the sink
contexts into six types depending on whether their parameters
are concatenated with strings, as detailed in Table 1.

Priority of Exploit Grammars. As we introduced in
§2.2.1, for XSS exploit components <Terminator, Protocol-
s/Events/Inline, JS> can form a total of eight different exploit
grammars, as shown in Figure 4. However, it is clear that
these grammars cannot be indiscriminately applied across all
sink contexts. Such an approach would produce many invalid
test cases that do not correspond to the sink context, severely
reducing the efficiency of fuzzing. More importantly, it would
also neglect the prioritization of exploit grammars, leading to
many unnecessary attempts. Taking the HTML context as an
example, certain grammars are fundamentally incompatible
(e.g., <JS> or <terminator JS>, which are unusable due to
the absence of a JavaScript execution environment), render-
ing attempts with these grammars unnecessary. Furthermore,
considering the hierarchical relationship between grammars,
once the simplest grammar has been tested, its supersets do
not need to be tested. For instance, if all fuzzing test cases
guided by the exploit grammar <Inline, JS> are completed
without discovering vulnerabilities, there is no need to at-
tempt its superset <Terminator, Inline, JS>, which also suits

Table 1: The exploit grammars and corresponding initial test cases for different sink context.

Sink Context String Concat Code Demo

Exploit Grammar Initial Test Case

echo $input;

<Inline, JS> <script>alert (1)</script>

HTML Context echo <p>.Sinput.</p>; <Protocols, JS> 1
: : ! <Events, JS> <input onerror=alert (1)>
<Protocols, JS> javascript:alert (1)
w/o echo ""; <Terminator, Events, JS> " onerror=javascript:alert(l) "
<Terminator, Inline, JS> "><script>alert (1) </script>
URL Context
<Terminator, Protocols, JS> ">
w/ echo ""; <Terminator, Events, JS> " onerror=alert (1) "
<Terminator, Inline, JS> "><script>alert (1) </script>
echo "<input value="".$input."">"; <Terminator, Events, JS> " onerror=alert (1) "

HTML Attributes Context

echo "<input value=foo"".$input.""foo>";

<Terminator, Protocols, JS> ">
<Terminator, Inline, JS> "><script>alert (1) </script>

echo "<input onclick="".$input."">";
JavaSerint C wio echo "<script>"".Sinput."";</script>"; <JS> alert(l)
avaScript Context
wed Cek=foo"" S1 TEOOS T, .
w/ echo "<input onclick=foo"".$input.""foo>"; <Terminator, JS> "alert (1);//

echo "<script>var pam="".$input.""foo;</script>";

the HTML context. This is because the failure of the sim-
plest grammar indicates that the current sanitizer effectively
handles the dangerous characters involved. Consequently, its
superset, which inherently employs these dangerous char-
acters, is also likely to fail. Based on these insights, when
designing exploit grammars for a sink context, we consider
not only their compatibility with the sink context but also their
priority. Specifically, we prioritize testing the simplest exploit
grammar first, as presented in Figure 4.

4.2.3 Mutation and Feedback

This phase guides which characters of the test case should be
mutated and how they should be mutated during fuzzing.
Mutation Strategies. First, we introduce the mutation strat-
egy of XSSky. The main goal of mutation is to transform
the initial test case to trigger XSS vulnerabilities and evade
potentially vulnerable sanitizers. To achieve this goal, we
investigated known CVEs, and existing evasion techniques
from the Internet [7,25,35,39]. As a result, we have collected
eight different evasion methods, which are used to construct
18 different XSS exploit component mutation strategies, as
illustrated in Table 2.

* M1: Character Casing Variation. This strategy alters char-
acter cases within inputs to bypass case-sensitive sanitizers
(e.g., changing <script> to <ScRipT>).

* M2: Multi-Form Keyword. By duplicating keywords, this
strategy exploits sanitizer handling of repeated patterns
(e.g., transforming <script> into <scr<script>ipt>).

* M3: Invisible Character Embedding. This strategy involves
inserting invisible characters like spaces or tabs into in-
puts (e.g., changing <script> to <script%09>) to disrupt
pattern-matching mechanisms.

* M4: Special Characters Embedding. By introducing spe-
cial characters into inputs to disrupt the parsing logic of
sanitizers, e.g., changing onload= to onload! #$%=.

* M5: Alternative Keywords. By substituting standard key-
words with alternatives that have similar functions (e.g.,
replacing <img onerror= with <svg onload=), this strat-
egy tests the completeness of keyword-based sanitizers.

* M6: Unicode Encoding. This strategy involves using Uni-
code escape sequences to represent characters, such as con-
verting alert (1) to al\u0065rt (1). This can bypass san-
itizers that do not properly handle character encodings.

* M7: Equivalent Semantic Variation. By employing different
syntactic forms that have the same semantic meaning, e.g.,
changing alert (1) to top["al"+"ert"] (1). It evaluates
a sanitizer’s ability to handle equivalent expressions.

* M8: Tricks. This strategy includes a variety of clever tech-
niques designed to alter the structure of code or data slightly,
such as using unconventional syntax or exploiting quirks in
JavaScript language (e.g., alert ‘*1"). These tricks can test
the edge cases of a sanitizer’s parsing and execution logic.

Feedback Mechanism. Then, we introduce the feed-
back mechanism of XSSky. As discussed in §3.3,
we can hook all string comparison functions (e.g.,
php_pcre_match_impl) and string modification functions
(e.g., php_pcre_replace_impl) in the PHP interpreter. The
hooked information can then be used as feedback to guide the
mutation and generation of test cases in the fuzzing process.
Figure 5 illustrates an example of how we hook the PHP
built-in function preg_replace (). The inserted code cap-
tures and logs key information every time preg_replace ()
is invoked, which is then fed back to the fuzzer to guide the
mutation of test cases. The logged information includes the
line number where the function is invoked, the input string,
the matched substring, and the return string after modification.
This detailed logging provides valuable context for under-
standing how preg_replace () is utilized at runtime and
suggests whether the input values remain consistent with ex-
pectations after being processed by the function.
Fuzzing Scheme. Finally, we describe how xSSky utilizes
mutation strategies and feedback mechanisms to iteratively

Table 2: Mutation strategies for different components.

Scope Strategies Examples

M1: Character Casing Variation
<Inline> M2: Multi-Form Keyword Encoding
M3: Invisible Character Embedding

<script>—<ScRipT>

<script>—<scr<script>ipt>

<script>— <script%09>

M1: Character Casing Variation javascript: — jAVasCriPt:

<Protocols>M2: Multi-Form Keyword Encoding javascript: — javasjavascriptcript:

M3: Invisible Character Embedding javas#x09;cript: — java#x09;script:

M1: Character Casing Variation onerror= — oNErRor=

M2: Multi-Form Keyword Encoding ~ onerror= — oneronerrorror=
<Events> M3: Invisible Character Embedding onerror= — onerror%09=

M4: Special Characters Embedding onload= —onload!#$%\=

MS5: Alternative Keywords <img onerror= — <svg onload=

M1: Character Casing Variation alert(1) — AIErT(1)
M2: Multi-Form Keyword Encoding alert(1) — alealertrt(1)
M3: Invisible Character Embedding alert(1) — alert%09(1)

<IS> MS5: Alternative Keywords

M6: Unicode Encoding

alert(1) — confirm(1)
alert(1) — al\u0065rt(1)
alert(1) — top["al"+"ert"](1)

MT7: Equivalent Semantic Variation
MS: Tricks

alert(1) — alert*1®

mutate initial test cases during the fuzzing process. Initially,
XSSky begins with the initial test case derived from the
first predefined exploit grammar. By analyzing the sanitizer-
flagged string in the feedback, it can identify which characters
are being blocked by the sanitizer. Subsequently, XSSky ap-
plies a corresponding mutation strategy to make targeted mu-
tations, which are then re-input. By examining the line number
information in the feedback, xSSky determines whether more
restrictions have been bypassed, thereby evaluating the effec-
tiveness of the current mutation strategy. If further restrictions
are bypassed, XSSky continues using the same mutation strat-
egy in subsequent iterations. Conversely, if no progress is
made, it will switch to a different mutation strategy until a
vulnerability is confirmed by the bug oracle. If all mutation
strategies are exhausted without generating a test case that
triggers a vulnerability, XSSky proceeds to the next exploit
grammar and repeats the process. The tested PUT is only
deemed secure after all exploit grammars have been tested
without success.

4.2.4 Bug Oracle

This phase is used to determine whether a particular
test case has revealed an XSS vulnerability during the
fuzzing process. Generally, a proof of concept (PoC)
confirming the presence of an XSS vulnerability aims
to trigger a browser popup. Therefore, XSSky employs
the Python library Selenium [6] to simulate browser
requests to access PUT and listen for JavaScript popups
in the browser. Additionally, since some test cases re-
quire interaction to be triggered, such as clicking links
(e.g., clickme)

1 | PHPAPI zend_string *php_pcre_replace_impl
(pere_cache_entry *pce, char *subject, zend_string *replace str){
2| match data=pcre2_match_data_create_from_pattern(pce->re);
3| count= pcre2_match(pce->re, (PCRE2_SPTR)subject, match_data);
4| if (count >=0) { /* Matched */
5 offsets = pcre2_get_ovector_pointer(match data);
6 size_t match_len = offsets[1] - offsets[0];
7 lineno = zend_get_executed_lineno();
8 matched_string = zend_string_init(subject + offsets[0], match_len);
9 FILE *log_file = fopen(LOG FILE, "a");
10 if (log_file) {
11 fprintf(log_file, "%d", lineno); /* Line number *
12 fprintf(log_file, "%s", subject); * Input string */
13 fprintf(log_file, "%s", matched_string); /* Matched string *
14 fprintf(log_file, "%s", replace_str); * Return string *
16 fclose(log_file);
17 }
18
19]}

Figure 5: An example of hooking the string modification
function preg_replace () in PHP interpreter. The inserted
hook code is highlighted with a light yellow background.

or hovering the cursor over elements (e.g., <input
onmouseover=alert (1)>), XSSky uses a crawler to simu-
late these interactions. This helps to thoroughly evaluate
whether a popup is effectively triggered after the test case is
injected, thereby confirming the XSS vulnerability.

5 Evaluation

Implementation. We implemented XSSky based on the state-
of-the-art static analyzer TChecker [41], with 7,004 lines of
code in Python. Specifically, in the path location stage, we
directly employed TChecker. Due to its implementation of
detecting potentially vulnerable paths, which stops analysis
upon encountering pre-modeled sanitizers, we modified this
logic to ensure it can also report paths containing sanitizers
completely. In the PUT conversion stage, we conducted our
analysis based on the code property graph (CPG) constructed
by the existing framework. However, during our evaluation
phase, we observed minor bugs in call graph construction;
specifically, a few call sites did not establish call edges with
their apparent call targets. We addressed these issues with
appropriate fixes. In summary, this module was implemented
in a total of 4,512 lines of code. During the fuzzing stage,
we implemented a total of 2,492 lines of code, including 347
lines for sink context analysis, 1,737 lines for implementing
mutation strategies and the fuzzing scheme, and 408 lines for
the implementation of the bug oracle.

Experiments. Our evaluation is organized by answering the
following research questions:

* RQ1: How effective is XSSky in converting source-sink

Table 3: Breakdown of our evaluation dataset and the XSS
vulnerabilities detected by XSSky.

Table 4: Statistical analysis of code elements of each PUT in
Average, Median, and Median Absolute Deviation (MAD).

Applications #Stars #LoCs # Vulns (w/. san) Code Elements Average Medium MAD
Matomo 20,079 346,773 - Function Definition 17 4 3
WordPress 19,772 334,247 - Temporary Variables 12 4 2
Firefly III 17,005 102,536 - Lines of Code 1,321 396 182
Grav CMS 14,651 110,109 -
October 11,056 39,986 -
Dolibarr 5,629 1,119,801 32 into locally executable PUTSs within our dataset. Overall, for
Op(e}ll;]g/IR ggg 222;22 i 8; 7,005 source-sink paths, XSSky successfully converted 6,997
Easylmage2.0 2:93 4 1 7,’207 17 (16) (99.89%) of them into 1oca11y‘executable .PUTs.
phpIPAM 2309 137478) Unsuccessful Path Conversion Analysis. For the 8 paths
AdminL.TE 2.083 9.152 1(0) that could not be successfully converted, we conducted a de-
Live helper chat 2,002 304,883 7 (4) tailed analysis and found that the root cause was the same:
Vmgphp 1,840 103,023 - there are function calls to third-party libraries on the paths.
Mantis Bug Tracker 1,675 79,315 - Since XSSky analyzes the source code of the target application,
ProjectSend 1,460 25,391 (1) which lacks the definitions for third-party library functions,
Jstolpe Blog 239 24,506 LD it is unable to relocate these function calls along the path,
Chyrp 231 18,966 2(0) leading to unsuccessful conversion of the PUTs.
Typesetter CMS 228 86,077 10(0) Statistical Analysis. We also conducted a statistical analysis
Tinl)jlﬁgjrltis S Tg; g;;gé 2 Eg; of the PUT conversion by XSSky. As shown in Table 4, each
’ PUT contains an average of 1,321 lines of code, including
Total / 4,082,064 60 31) 17 function definitions and 12 temporary variables. Notably,

paths into locally executable PUTs from real-world appli-
cations? (in §5.1)

* RQ2: How effective is XSSky in detecting XSS vulnerabili-
ties in real-world applications? (in §5.2)

* RQ3: How accurate is XSSky compared to the state-of-the-
art approaches? (in §5.3)

* RQ4: How efficient is XSSky in performing the end-to-end
analysis? (in §5.4)

Dataset. Our dataset consists of 20 popular PHP web appli-
cations, and the selection criteria are as follows. First, we
filtered applications on GitHub [1] using the PHP language
keyword. We then selected these applications with more than
100 stars to ensure their popularity. Finally, to ensure the
representativeness of the dataset, we randomly chose 5 ap-
plications with over 10,000 stars, 10 applications with over
1,000 stars, and 5 applications with over 100 stars to comprise
the dataset. The detailed dataset is presented in Table 3.

Setup. All the experiments in this section are run on a Ubuntu
20.04 machine with an Intel Xeon Gold 6242 processor (64
cores) and 512 GB memory. Furthermore, both our PUTs and
the fuzzer engine were run under Apache 2.4.41 and PHP
7.4.0. All baselines in §5.3 were executed according to their
provided guidelines [8-10, 15], using default configurations.

5.1 RQ1: PUT conversion

In this phase, we evaluated the effectiveness of XSSky in
converting the source-sink paths reported by TChecker [41]

the median and MAD indicate that the number of temporary
variables and function definitions per PUT is significantly
lower than the average. This discrepancy is mainly due to the
complex code logic of two applications in our dataset (i.e.,
WordPress and Mantis Bug Tracker), which utilize more func-
tion calls and externally or dynamically assigned variables,
thereby inflating the average values.

5.2 RQ2: XSS Vulnerability Detection

In this phase, we evaluated the effectiveness of XSSky in de-
tecting XSS vulnerabilities within our dataset through PUT
fuzzing. In all, XSSky reported 74 distinct potential vulnera-
bilities. The quality of these reports is discussed as follows.
Report Verification. First, we manually investigated the re-
ported vulnerabilities to confirm their exploitability in the
runtime environments of real-world applications. Overall, we
confirmed that 60 / 74 (81.08%) reports are indeed XSS vul-
nerabilities, with details presented in Table 3. Attackers can
exploit these vulnerabilities to compromise the corresponding
applications, including stealing sensitive user information,
redirecting users to malicious websites, or even executing
unauthorized actions on behalf of users.

False Positives Analysis. For the remaining 14 false positives,
we conducted a thorough examination of their causes and
found that they mainly stem from two aspects.

* Restricted by control flow constraints (6 FPs). Given that
the static tool TChecker, used by XSSky, employs a forward
data-flow analysis to locate source-sink paths, it results in

Table 5: Breakdown of the sink contexts and sanitizers of
XSS vulnerabilities detected by XSSky.

Sink Context w/. san w/o. san Total
HTML Context 9 19 28
URL Context 2 3 5
HTML Attributes Context 14 5 19
JavaScript Context 6 2 8
Total 31 29 60

reported paths lacking control flow constraints. This limita-
tion means that XSSky cannot account for these constraints
during the conversion and fuzzing of the PUT. However,
we believe that these false positives can be eliminated in
the future by incorporating advanced static analyzers.

* Dead code (8 FPs). These false positives were found in
the dead code of the target applications. Notably, XSSky
is capable of confirming vulnerabilities in PUTs of these
cases. Unfortunately, static detector failed to identify that
these paths were not potential vulnerable paths and thus
provided them to XSSky, resulting in false positives.

Vulnerability Causes Analysis. We further analyzed the sink
contexts and root causes of the confirmed vulnerabilities, as
detailed in Table 5. The causes of these vulnerabilities can be
attributed to the following three categories:

* Lack of sanitizer protection (29 cases). These vulnerabili-
ties are caused by the lack of sanitizer protection along the
source-sink path, allowing attackers to exploit XSS vulner-
abilities using the most basic exploits.

» Improper sanitizer usage (24 cases). Although sanitizers
were deployed on these vulnerable paths, we found that
they were evaded due to misuse (as discussed in Figure 2).

* Inadequate sanitizer policies (7 cases). For these vulnerabil-
ities, we found that the developers had correctly deployed
sanitizers for the corresponding sink context. However, due
to inadequate detection of dangerous characters, attackers
were able to craft exploits using alternative keywords, re-
sulting in XSS vulnerabilities.

For the 31 sanitizers that are evaded due to improper use
or insufficient sanitization, we present their detailed infor-
mation in Appendix-Table 8. These sanitizers comprise 8
PHP built-in functions and 23 developer-defined sanitization
rules. Additionally, there are 6 developer-customized sanitiz-
ers, each composed of at least one or more built-in functions
or sanitization rules. On average, with averaging 67.3 LoC,
illustrating their complexity.

Furthermore, we observed an interesting finding: vulnera-
bilities in the HTML Attributes Context had the highest rate of
evasion due to sanitizer failures (14/19, 73.68%), while those
in the HTML Context had the lowest rate (9/28, 32.14%).
Sanitizers like strip_tags(), htmlspecialchars(), or

htmlentities () are effective in the HTML Context but can
be bypassed in the HTML Attributes Context with payloads
like "’ onclick=alert (1) //". Deploying sanitizers dur-
ing development without considering the sink context will
increase the risk of evasion.

5.3 RQ3: Comparison

Baseline Setup. We compare the effectiveness of XSSky
against two baseline types in detecting XSS vulnerabilities.

e Static Detectors. Defining source and sink and then per-
forming taint analysis to identify potential vulnerabilities is
currently the mainstream approach for static vulnerability
detectors. Therefore, we have chosen to include the SOTA
work TChecker [41] as one of our baselines.

* Dynamic Testers. Dynamic analysis is another mainstream
approach for detecting XSS vulnerabilities. Given that our
work focuses on the source code of target applications, with-
out a runtime environment. To ensure a fair comparison,
we compared this line of work on XSSky-generated PUTs,
guided by the following considerations: XSSky employs
static code exploration, while baselines use dynamic meth-
ods. PUT-based comparison helps avoid code-coverage-
induced false negatives and focuses on comparing vulner-
ability confirmation capability. Since PUTs provide exe-
cutable environments compliant with baseline requirements,
we believe this setup doesn’t hinder their performance.
Therefore, we have disabled the fuzzer engine in XSSky
and have equipped XSSky with these dynamic testers. In all,
we selected four open-source and well-known techniques
aimed at detecting XSS vulnerabilities, namely w3af [9]
(employed by several renowned crawlers [23, 24]), Burp
Suite [15], Black widow [24] and webFuzz [48], and inte-
grated them into XSSky, referring to these integrations as
XSSky-w3af, XSSky-Burp, XSSky-bw and XSSky-webFuzz.

Benchmark. Comparing the accuracy of each work requires
a comprehensive enumeration of all vulnerabilities within our
dataset, which is impractical. Therefore, to ensure a fair com-
parison, we followed the mainstream approach [38,45,51],
which involves constructing a ground truth by aggregating
all vulnerabilities identified by both XSSky and the baseline
tools in our dataset. It is important to note that each vulnera-
bility involved in the ground truth underwent careful scrutiny.
This was accomplished by manually confirming them as true
positives. In total, the ground truth consists of 60 vulnera-
bilities. It is worth noting that XSSky can detect all of these
cases, showcasing its remarkable capability by combining the
strengths of both dynamic and static analysis.

Results Overview. Overall, the results presented in Ta-
ble 6 show that XSSky outperforms several baselines in
detecting XSS vulnerabilities by improving precision by
11.48%~642.49% and recall by 87.51%~172.70%. Notably,
it not only identifies all the vulnerabilities detected by the

Table 6: Comparison of the effectiveness between XSSky and
state-of-the-art (SOTA) techniques.

Baselines TP (w/.san) FP FN Prec(%) Recall(%)
XSSky 60 (31) 14 0 81.08% 100.00%
TChecker 32 (3) 261 28 10.92% 53.33%
XSSky-w3af 22 (2) 10 38 68.75% 36.67%
XSSky-bw 24 (2) 9 36 7273% 40.00%
XSSky-webFuzz 25 (10) 11 35 6944% 41.67%
XSSky-Burp 29 (2) 11 31 7250% 48.33%

baselines but also discovers 18 additional vulnerabilities that
none of the baselines could detect.

Compared with Static Detector. Compared to TChecker,
XSSky improves the precision of XSS vulnerability detection
by 624.49% and the recall rate by 87.51%. Specifically, the
261 false positives reported by TChecker mainly stem from
two main aspects. (1) 179 false positives caused by custom
sanitizers present on the source-sink path, which are not in-
cluded in TChecker’s pre-built models, leading to incorrect
identification of unprotected paths. (2) 73 false positives due
to TChecker’s inability to analyze the semantics of typecast-
ing operations (e.g.,int () operation casts strings to integers).
Comparably, XSSky benefits from its novel fuzzing design,
which does not rely on sanitizer modeling or static seman-
tic analysis, thereby effectively avoiding these false positives.
For the remaining 9 false positives reported by TChecker, they
share the same cause as those identified by XSSky, which we
have discussed in §5.2. Regarding the 28 false negatives from
TChecker, these were due to hasty assumptions about the
effectiveness of sanitizers. Specifically, TChecker assumed
that the presence of a sanitizer on a path guarantees secu-
rity, whereas these false negatives resulted from sanitizer
evasion. While XSSky does not rely on these assumptions,
allowing it to successfully detect these vulnerabilities. Inter-
estingly, TChecker still detected three vulnerabilities caused
by sanitizer evasion. This was due to its insufficient sanitizer
modeling, which failed to identify these sanitizers, thereby
inadvertently reporting them as vulnerabilities.

Compared with Dynamic Testers. Among dynamic testers,
although XSSky-Burp achieved the best results (i.e., discov-
ered 29 vulnerabilities), we found that its recall was still only
48.33%. Compared to them, XSSky has a significant advantage
in detecting vulnerabilities arising from both the absence and
the evasion of sanitizers. Specifically, we found that XSSky-
w3af, XSSky-Burp, XSSky-bw, and XSSky-webFuzz all lack
sink context analysis, leading to ineffective attempts and fail-
ure to construct test cases that align with the syntactic struc-
ture of the target sink context, thus missing many vulnerabili-
ties caused by absent sanitizers. Regarding vulnerabilities aris-
ing from sanitizer evasion, we found that all baselines detect
only a few cases (2-10). This is mainly because identifying
vulnerable sanitizers usually requires a targeted mutation and

Table 7: Performance (seconds) of XSSky for analyzing each
application is broken down by different modules in Average,
Median, and Median Absolute Deviation (MAD).

XSSky Module Average Medium MAD

Path Location 2,013.51s 539.45s 537.39s
PUT Conversion 9,807.49s 106.96s 105.68s
PUT Fuzzing 1,651.48s 45.63s 43.62s
End-to-end Total 13,472.48s 692.04s 686.69s

evolution process. Existing dynamic testers fall short in this
aspect; although webFuzz employs a more diverse mutation
strategy, it lacks an effective feedback mechanism for guid-
ance, failing to discover 21 vulnerabilities caused by evaded
sanitizers. In contrast, XSSky’s novel feedback mechanism en-
ables it to effectively understand sanitizers and guide targeted
mutations, thus identifying these vulnerabilities. Regarding
false positives, given that dynamic testers have corresponding
bug oracles, no false positives emerged during the testing of
the PUTs. However, when confirming vulnerabilities within
the application, they encounter the same causes of false posi-
tives as XSSky, as discussed in §5.2.

5.4 RQ4: Efficiency

In this phase, we evaluated the efficiency of XSSky by per-
forming end-to-end analysis on our dataset. In total, XSSky
spent an average of 3.74 hours detecting XSS vulnerabili-
ties for a target application from our dataset. The details are
presented in Table 7. Specifically, in the Path Location mod-
ule, xSSky employed TChecker to complete the task, with
an average time of approximately 0.56 hours per applica-
tion. Meanwhile, the PUT conversion module appears to be a
relatively time-consuming task, averaging 2.72 hours per ap-
plication. However, when considering the Median and MAD,
its time cost is actually lower than that of the path location.
This indicates that aside from a small number of cases involv-
ing large-scale path conversions, the PUT conversion for most
paths is efficient. Regarding the PUT Fuzzing module, it takes
an average of 0.46 hours to test all PUTs in a target application.
Additionally, we observed that both the Median and MAD for
these modules are significantly lower than the average values.
This is because our dataset includes two particularly large
applications (i.e., Dolibarr and OpenEMR), whose total lines
of code are comparable to the combined total of the other
18 applications, thereby inflating the overall average analysis
time. Overall, given that vulnerability detection is usually an
offline task, we believe that having a stronger capability to
detect vulnerabilities is more favorable.

6 Discussion

Inherent Limitations of Static Analysis. Although XSSky
significantly outperforms several baselines in precision and
recall, it still reports some false positives. The key reason
lies in that, XSSky is built upon existing static detectors (e.g.,
TChecker [41]) to identify XSS vulnerabilities (i.e., take as in-
puts the source-sink paths reported by existing tools). Hence,
the inherent limitations of static detectors (e.g., ignoring con-
trol flow constraints when reporting source-sink paths, report-
ing source-sink paths among dead code, etc.) consequently
hurt the effectiveness of XSSky. This issue can be potentially
addressed by incorporating more advanced static detectors.
Defense-in-depth Mechanism. Apart from preventing XSS
through sanitizers in the code, another approach is to prevent
XSS by configuring defense-in-depth mechanisms, such as
Content Security Policy (CSP). The developers can define
a policy (via HTTP headers) specifying allowed sources for
scripts, styles, images, etc. This, in turn, helps prevent mali-
cious behavior. Given that XSSky is a technique focused on
code security, such mechanisms are outside its scope.
Realism of Vulnerability Reports. Another common con-
cern for local fuzzing of source-sink paths is the realism of
the identified vulnerabilities (i.e., whether the vulnerability
confirmed with the PUT can also be triggered in the original
application). Although our adaptions on undefined symbols
may indeed lead to false positives of vulnerability detection,
after carefully analyzing the experimental results, we con-
firmed that no false positives were caused by this reason.
Despite the aforementioned shortcomings, we believe that
XSSky represents a step forward in advancing XSS vulnera-
bility detection.

Future Work. In the future, the capabilities of XSSky can
be improved in two aspects: (1) equip with more XSS san-
itizer evasion techniques. Currently, XSSky is an academic
prototype and does not cover all evasion techniques. In the
future, end-users can customize a wider range of techniques
to strengthen its detection capabilities; (2) expand XSSky’s
ability to detect stored XSS vulnerabilities. Following the
high-level design of XSSky, end-users only need to define the
data retrieval function as the source, and XSSky can acquire
this ability.

7 Related Work

Sanitizer-targeted XSS Detection. These works can be clas-
sified into the following two types. One line of work aims
to improve existing static analyzers by verifying the security
of sanitizers through Satisfiability Modulo Theories (SMT)
solvers [18,27,35,37]. Lathouwers et al. [37] used Symbolic
Finite Transducers to verify sanitizer implementations against
a given security specification. Alhuzali er al. [18] applied
the Z3-str solver, while Klein et al. [35] utilized Determinis-
tic Finite Automata to generate exploits to evade sanitizers.

Eriksson et al. [27] adopted a two-way alternating finite-state
automaton for generating testing payloads that meet client-
side format requirements. Despite their effectiveness, these
methods require extensive modeling by security experts, and
inevitably face challenges like memory explosion when han-
dling sanitizers intertwined with complex business logic.
Another line of work focuses on a specific type of sanitizer
based on HTML parsers. For instance, MutaGen [36] revealed
that such sanitizers and user browsers could potentially pro-
duce divergent results when parsing HTML fragments, thus
potentially causing bypasses. In comparison, XSSky focuses
on general types of XSS vulnerabilities, rather than a specific
type of sanitizer evasion. Besides, such types of sanitizers
have not yet been found in our dataset. Furthermore, given that
MutaGen requires end-users to inspect and annotate HTML
parser-based sanitizers for testing, it lacks some flexibility
compared to XSSky.
Vulnerable Code Clone Detection. Another technique that
could aid static tools in identifying vulnerable sanitizers is
vulnerable code clone detection, which matches unknown vul-
nerabilities by extracting features from a large set of known
vulnerabilities. Jang et al. [32] introduced a token-based ap-
proach called ReDeBug to locate unpatched code clones at
the line-level granularity. Kim et al. [34] presented VUDDY, a
scalable approach for detecting vulnerable code clones using
several vulnerability-preserving abstraction techniques. Xiao
et al. [51] proposed MVP and Shi et al. [45] introduced Re-
curScan; both approaches take security patches as input and
extract signatures from both pre-patch and post-patch code
for vulnerability detection. However, these techniques require
the presence of a reference vulnerability, and thus are unable
to detect vulnerable code that appears for the first time.

8 Conclusion

In this paper, we propose XSSky, a static sanitizer-tolerant
detector for accurately detecting XSS vulnerabilities within
PHP web applications. XSSky converts source-sink paths iden-
tified by the static detector into locally executable PUTs and
employs a path-persistent fuzzing strategy guided by feed-
back from the PHP interpreter. This novel design avoids the
burdensome sanitizer modeling and enhances the ability of
static detectors to detect vulnerable sanitizers. Our evalua-
tion results demonstrate that XSSky can detect 60 previously
unknown XSS vulnerabilities in 20 popular PHP web applica-
tions, outperforming several baselines by improving precision
by 11.48%~642.49% and recall by 87.51%~172.70%.

Acknowledgement

We would like to thank our shepherd and the anonymous re-
viewers for their helpful comments and feedback. This work
was supported in part by the National Natural Science Foun-

dation of China (U2436207, 62172105, 62402116) and Hong
Kong RGC Projects (PolyU15224121, PolyU15231223).
Yuan Zhang, Xiapu Luo and Min Yang are the corresponding
authors. Yuan Zhang was supported in part by the Shang-
hai Pilot Program for Basic Research - FuDan University
21TQ1400100 (21TQO012). Min Yang is a faculty of Shang-
hai Institute of Intelligent Electronics & Systems, and En-
gineering Research Center of Cyber Security Auditing and
Monitoring, Ministry of Education, China.

9 Open Science

The source code of XSSky is available upon reasonable request
via the Zenodo [17]. To mitigate potential misuse (detailed
in §10), we have implemented a controlled access policy.
Readers can request access by contacting us through their in-
stitutional email, stating their name, affiliation, and intended
use in the email. We will then vet the provided information
and grant or deny access to the source code. Our goal is to
grant access to academic and industry researchers for pur-
poses of building upon our research or advancing the field of
cybersecurity, while ensuring XSSky isn’t exploited for any
malicious purposes.

10 Ethical considerations

This research was conducted with careful attention to ethical
responsibilities, which are detailed below.

Vulnerability Verification Environment. In our evaluation
part, all of the applications are open-source, and we down-
loaded and conducted analysis on them locally through XSSky.
This process did not involve any data related to real user pri-
vacy. Then, after XSSky reported potential vulnerabilities, we
built these applications on a local server for vulnerability ver-
ification. This process also did not involve any user privacy.
Vulnerability Disclosure. In terms of vulnerability disclo-
sure, all our vulnerability reports have strictly adhered to the
timeline of the CVE Numbering Authorities (CNA), along
with proactive communication with all developers. Specif-
ically, after we manually confirmed the vulnerabilities, we
immediately contacted the developers, including raising is-
sues in the Github repository and via email. We carefully
explained to the developers the cause of the vulnerability, the
details of vulnerability exploitation, and the corresponding
recommended solutions for fixing the issues. Although the
detected vulnerabilities were still being fixed at the time we
submitted this paper, we did not mention any information
about these vulnerabilities in the paper. Therefore, the release
of this paper will not cause any harm to real-world users.
Artifact Availability and Potential for Misuse. We have
carefully considered the ethical implications of releasing the
XSSky artifact.

* Potential Risks: As a tool that proved effective in dis-
covering numerous previously unknown XSS vulnera-
bilities, with many involving sanitizer bypasses, XSSky
could be repurposed by malicious actors to find and ex-
ploit vulnerabilities in live web applications. We acknowl-
edge that while other XSS testing tools are publicly avail-
able, XSSky’s novel path-persistent fuzzing and interpreter-
feedback mechanisms may grant it an advantage in discov-
ering vulnerabilities that other tools miss, heightening the
risk of misuse.

* Mitigating Factors in Real-World Systems: We recognize
that modern applications often deploy defense-in-depth
mechanisms. Security measures like a well-configured
Content Security Policy (CSP), Web Application Firewalls
(WAFs), or Trusted Types can mitigate or block the ex-
ploitation of XSS vulnerabilities. However, these defenses
are not universally adopted, can be misconfigured, and are
sometimes overlooked.

* Trade-offs and Our Approach: We weighed the risks of
unrestricted release against the scientific benefits of open
access. Releasing the tool without any controls could em-
power attackers, but restricting it entirely would prevent
the community from building on our work to create bet-
ter defenses. We have therefore chosen a middle ground:
controlled distribution. By making the artifact available
upon request to identified researchers, we aim to support
legitimate scientific inquiry while adding a layer of account-
ability that deters casual misuse. This approach balances
our commitment to open science with our ethical duty to
prevent foreseeable harm.

References

[1] Github. https://github.com.

[2] Programming Language
https://thehackernews.com/2015/12/
programming-language-security.html, 2015.

Security.

[3] Baidu. https://www.baidu.com, 2024.

[4] CVE-2020-14475. https://nvd.nist.gov/vuln/
detail/CVE-2020-14475,2024.

[5] Python library - Ixml. https://1xml.de, 2024.

[6] Python library - Selenium. https://www.selenium.
dev, 2024.

[7] Sink Context of XSS vulnerabilities. https:
//cheatsheetseries.owasp.org/cheatsheets/
Cross_Site_Scripting_Prevention_Cheat_
Sheet .html#output-encoding, 2024.

[8] Source Code - TChecker. https://github.com/
cuhk-seclab/TChecker, 2024.

https://github.com
https://thehackernews.com/2015/12/programming-language-security.html
https://thehackernews.com/2015/12/programming-language-security.html
https://www.baidu.com
https://nvd.nist.gov/vuln/detail/CVE-2020-14475
https://nvd.nist.gov/vuln/detail/CVE-2020-14475
https://lxml.de
https://www.selenium.dev
https://www.selenium.dev
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#output-encoding
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#output-encoding
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#output-encoding
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#output-encoding
https://github.com/cuhk-seclab/TChecker
https://github.com/cuhk-seclab/TChecker

[9] Source Code - w3af. https://github.com/
andresriancho/w3af, 2024.

[10] Source Code - webFuzz. https://bitbucket.org/
srecgrp/webfuzz-fuzzer, 2024.

[11] Tumblr. https://www.tumblr.com, 2024.

[12] W3Techs - Usage statistics of PHP for websites. https:
//w3techs.com/technologies/details/pl-php,
2024.

[13] Wikipedia. https://www.wikipedia.org, 2024.
[14] WordPress. https://wordpress.com, 2024.
[15] Burp Suite. https://portswigger.net/burp, 2025.

[16] CVE Details - Vulnerabilities By Types. https://www.
cvedetails.com/vulnerabilities-by-types.
php, 2025.

[17] XSSky - Source Code. https://zenodo.org/
records/15580726, 2025.

[18] Abeer Alhuzali, Rigel Gjomemo, Birhanu Eshete, and
VN Venkatakrishnan. NAVEX: Precise and scalable
exploit generation for dynamic web applications. In
27th USENIX Security Symposium (USENIX Security
18), pages 377-392, 2018.

[19] Domagoj Babié, Stefan Bucur, Yaohui Chen, Franjo
Ivancié, Tim King, Markus Kusano, Caroline Lemieux,
Laszl6 Szekeres, and Wei Wang. Fudge: fuzz driver
generation at scale. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of
Software Engineering, pages 975-985, 2019.

[20] Michael Backes, Konrad Rieck, Malte Skoruppa, Ben
Stock, and Fabian Yamaguchi. Efficient and flexible
discovery of php application vulnerabilities. In 2017
IEEE european symposium on security and privacy (Eu-
roS&P), pages 334-349. IEEE, 2017.

[21] Johannes Dahse and Thorsten Holz. Simulation of built-
in php features for precise static code analysis. In NDSS,
volume 14, pages 23-26, 2014.

[22] Johannes Dahse and J Schwenk. Rips-a static source
code analyser for vulnerabilities in php scripts (2010),
2012.

[23] Adam Doupé, Ludovico Cavedon, Christopher Kruegel,
and Giovanni Vigna. Enemy of the state: A state-aware
black-box web vulnerability scanner. In 2/st USENIX
Security Symposium (USENIX Security 12), pages 523—
538, 2012.

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis.
Rescan: A middleware framework for realistic and ro-
bust black-box web application scanning. In Network
and Distributed System Security (NDSS) Symposium,
2023.

Fabien Duchene, Sanjay Rawat, Jean-Luc Richier, and
Roland Groz. Kameleonfuzz: evolutionary fuzzing for
black-box xss detection. In Proceedings of the 4th ACM
conference on Data and application security and pri-
vacy, pages 37-48, 2014.

Benjamin Eriksson, Giancarlo Pellegrino, and Andrei
Sabelfeld. Black widow: Blackbox data-driven web
scanning. In 2021 IEEE Symposium on Security and
Privacy (SP), pages 1125-1142. IEEE, 2021.

Benjamin Eriksson, Amanda Stjerna, Riccardo
De Masellis, Philipp Riiemmer, and Andrei Sabelfeld.
Black ostrich: Web application scanning with string
solvers. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security,
pages 549-563, 2023.

Emre Giiler, Sergej Schumilo, Moritz Schloegel, Nils
Bars, Philipp Gorz, Xinyi Xu, Cemal Kaygusuz, and
Thorsten Holz. Atropos: Effective fuzzing of web ap-
plications for server-side vulnerabilities. In USENIX
Security Symposium, 2024.

Xiangyu Guo. Evocrawl: Exploring web application
code and state using evolutionary search. Master’s the-
sis, University of Toronto (Canada), 2023.

Mark Hills, Paul Klint, and Jurgen Vinju. An empirical
study of php feature usage: a static analysis perspective.
In Proceedings of the 2013 international symposium on
software testing and analysis, pages 325-335, 2013.

Heqing Huang, Yiyuan Guo, Qingkai Shi, Peisen Yao,
Rongxin Wu, and Charles Zhang. Beacon: Directed
grey-box fuzzing with provable path pruning. In 2022
IEEE Symposium on Security and Privacy (SP), pages
36-50. IEEE, 2022.

Jiyong Jang, Abeer Agrawal, and David Brumley. Re-
DeBug: Finding Unpatched Uode Clones in Entire OS
Distributions. In Proceedings of the 33rd IEEE Sympo-
sium on Security and Privacy, 2012.

Nenad Jovanovic, Christopher Kruegel, and Engin Kirda.
Pixy: A static analysis tool for detecting web application
vulnerabilities. In 2006 IEEE Symposium on Security
and Privacy (S&P’06), pages 6—pp. IEEE, 2006.

Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo
Oh. VUDDY: A Scalable Approach for Vulnerable
Code Clone Discovery. In Proceedings of the 38th IEEE
Symposium on Security and Privacy, 2017.

https://github.com/andresriancho/w3af
https://github.com/andresriancho/w3af
https://bitbucket.org/srecgrp/webfuzz-fuzzer
https://bitbucket.org/srecgrp/webfuzz-fuzzer
https://www.tumblr.com
https://w3techs.com/technologies/details/pl-php
https://w3techs.com/technologies/details/pl-php
https://www.wikipedia.org
https://wordpress.com
https://portswigger.net/burp
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://zenodo.org/records/15580726
https://zenodo.org/records/15580726

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

David Klein, Thomas Barber, Souphiane Bensalim, Ben
Stock, and Martin Johns. Hand sanitizers in the wild: A
large-scale study of custom javascript sanitizer functions.
In 2022 IEEE 7th European Symposium on Security and
Privacy (EuroS&P), pages 236-250. IEEE, 2022.

David Klein and Martin Johns. Parse me, baby, one more
time: Bypassing html sanitizer via parsing differentials.
In 2024 IEEE Symposium on Security and Privacy (SP),
pages 203-221. IEEE, 2024.

Sophie Lathouwers, Maarten Everts, and Marieke Huis-
man. Verifying sanitizer correctness through black-box
learning: A symbolic finite transducer approach. In Pro-
ceedings of the 6th International Conference on Infor-
mation Systems Security and Privacy: Volume 1: ForSE,
pages 784-795. SciTePress, 2020.

Fengyu Liu, Youkun Shi, Yuan Zhang, Guangliang Yang,
Enhao Li, and Min Yang. Mocguard: Automatically
detecting missing-owner-check vulnerabilities in java
web applications. In 2025 IEEE Symposium on Security
and Privacy (SP), pages 10-10. IEEE Computer Society,
2024.

Miao Liu, Boyu Zhang, Wenbin Chen, and Xunlai
Zhang. A survey of exploitation and detection methods
of xss vulnerabilities. IEEE access, 7:182004—182016,
2019.

Yuwei Liu, Yanhao Wang, Xiangkun Jia, Zheng Zhang,
and Purui Su. Afgen: Whole-function fuzzing for appli-
cations and libraries. In 2024 IEEE Symposium on Se-
curity and Privacy (SP), pages 1901-1919. IEEE, 2024.

Changhua Luo, Penghui Li, and Wei Meng. Tchecker:
Precise static inter-procedural analysis for detecting
taint-style vulnerabilities in php applications. In Pro-
ceedings of the 2022 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 2175-2188,
2022.

Sebastian Neef, Lorenz Kleissner, and Jean-Pierre
Seifert. What all the phuzz is about: A coverage-guided
fuzzer for finding vulnerabilities in php web applica-
tions. In Proceedings of the 19th ACM Asia Confer-
ence on Computer and Communications Security, pages
1523-1538, 2024.

Giancarlo Pellegrino, Constantin Tschiirtz, Eric Bodden,
and Christian Rossow. jik: Using dynamic analysis to
crawl and test modern web applications. In Research
in Attacks, Intrusions, and Defenses: 18th International
Symposium, RAID 2015, Kyoto, Japan, November 2-4,
2015. Proceedings 18, pages 295-316. Springer, 2015.

[44]

[45]

[46]

[47]

(48]

[49]

(50]

(51]

Seemanta Saha, Laboni Sarker, Md Shafiuzzaman, Chao-
fan Shou, Albert Li, Ganesh Sankaran, and Tevfik Bultan.
Rare path guided fuzzing. In Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 1295-1306, 2023.

Youkun Shi, Yuan Zhang, Tianhao Bai, Lei Zhang, Xin
Tan, and Min Yang. Recurscan: Detecting recurring
vulnerabilities in php web applications. In Proceedings
of the ACM on Web Conference 2024, pages 1746-1755,
2024.

Aleksei Stafeev, Tim Recktenwald, Gianluca De Stefano,
Soheil Khodayari, and Giancarlo Pellegrino. Yurascan-
ner: Leveraging 1lms for task-driven web app scanning.
2024.

Erik Trickel, Fabio Pagani, Chang Zhu, Lukas Dresel,
Giovanni Vigna, Christopher Kruegel, Ruoyu Wang,
Tiffany Bao, Yan Shoshitaishvili, and Adam Doupé.
Toss a fault to your witcher: Applying grey-box
coverage-guided mutational fuzzing to detect sql and
command injection vulnerabilities. In 2023 IEEE sym-
posium on security and privacy (SP), pages 2658-2675.
IEEE, 2023.

Orpheas van Rooij, Marcos Antonios Charalambous,
Demetris Kaizer, Michalis Papaevripides, and Elias
Athanasopoulos. webfuzz: Grey-box fuzzing for web ap-
plications. In Computer Security—ESORICS 2021: 26th
European Symposium on Research in Computer Security,
Darmstadt, Germany, October 4-8, 2021, Proceedings,
Part I 26, pages 152—172. Springer, 2021.

Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou.
Taintscope: A checksum-aware directed fuzzing tool
for automatic software vulnerability detection. In 2010
IEEE Symposium on Security and Privacy, pages 497—
512. IEEE, 2010.

Seongil Wi, Sijae Woo, Joyce Jiyoung Whang, and Sooel
Son. HiddenCPG: Large-Scale Vulnerable Clone De-
tection using Subgraph Isomorphism of Code Property
Graphs. In Proceedings of the ACM Web Conference
2022, 2022.

Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu,
Zimu Yuan, Feng Li, Binghong Liu, Yang Liu, Wei Huo,
Wei Zou, et al. MVP: Detecting vulnerabilities us-
ing Patch-Enhanced vulnerability signatures. In 29th
USENIX Security Symposium (USENIX Security 20),
pages 1165-1182, 2020.

Table 8: Detailed information on all evaded sanitizers and rules from the vulnerabilities identified by XSSky.

Types

Details

Built-in Functions

strip_tags,
filter_var

strpos, json_encode, json_decode, is_array, html_entity_decode, htmlspecialchars,

preg_replace ("/ ([\\\])*\"/', "\\\"", S$var),
preg_replace('/([<>]) ([-+]2\d)/"', '\1 \2', $var),
preg_replace (array ('/*["\?]1*%/"),
preg_replace (array ('/*[a-z]\/\s\/+/1"), '', $var),
preg_replace ("/\\\ ([0-9%xu]) /', '/\1', S$var),
preg_replace ('/<br[*>]*>(\n|\r)+/ims', '
', $var),
preg_replace('/<br[">]*>/i', "\n", $var),
preg_replace ('/<["<>]+>/", '', $var),
preg_replace('/<+([a-z]+)/i', '\1', S$var),
str_replace ("\\', '/' Svar),
str_replace (array(':"', ';', '@', "\t", ' '), '', $var),
str_replace(array("\r\n" "\r", "\n"), " ", S$var),
str_replace('<>', '', Svar),

Sanitization Rules str_replace(" ", " ", Svar),
str_replace('< ', '__ltspace__"', $var),
str_replace('<:', '__ lttwopoints__', $var),
str_replace (' ltspace v, '< ', Svar),
str_replace('__lttwopoints__ ', '<:', $var),
str_replace (array (""", "/", "\\", MM, RN MQN WNWH W o WSW MW W[mwpwowmmannsnvory
ISY, ';') , |7|, sstr),
str ireplace(array('javascript', 'vbscript', '&colon', 's&#'),'', Svar),
str_ireplace(array('../", "..\\"', '&', '&', '&', '"', '"', '"', '"',
'e#x22", '/"', '/', '#x2F", '\', '\', 's\'), '', $var),
strtr($var, array('&' => '__andamp__', '<' => '__andlt__ "', '>' => '__andgt__',
e =y '_quOt_')),
strtr($var, array('__andamp__ ' => 'gamp;', '__andlt__' => 'g<', '__andgt__"' => '&qgt;'
lvdquotvl :> LI}))’

Custom Functions! outputResponse, js_escape, fixquotes, GETPOST, dol_html_entity_decode, sanitizerVal

I Custom functions consist of at least one or more PHP built-in functions and sanitization rules.

	Introduction
	Background
	XSS Vulnerability Types
	XSS Vulnerability Exploitation
	Common components of XSS exploits
	Sink contexts

	XSS Sanitizers
	Existing Work for XSS Detection

	Design Overview
	Our High-Level Idea
	Challenges
	Key Insights
	Running Example

	Design of XSSky
	PUT Conversion Module
	Undefined Variable Initialization
	Undeclared Function Localization

	PUT Fuzzing Module
	Sink Context Analysis
	Test Case Initialization
	Mutation and Feedback
	Bug Oracle

	Evaluation
	RQ1: PUT conversion
	RQ2: XSS Vulnerability Detection
	RQ3: Comparison
	RQ4: Efficiency

	Discussion
	Related Work
	Conclusion
	Open Science
	Ethical considerations

